Books


  1. [B]. M. Tan, X.-Z. Huang, and F. Lin, Analog IC Design with Low-Dropout Regulators, Science Press, 2012 (Chinese Translation).

Journal Papers


  1. [J]. M. Tan, R. W. Yeung, S.-T. Ho, and N. Cai, “A unified framework for linear network codes,” IEEE Trans. Inf. Theory (TIT), vol. 57, no. 1, pp. 416-423, Jan. 2012.
  2. [J]. M. Tan and W.-H. Ki, “A cascode Miller-compensated three-stage amplifier with local impedance attenuation for optimized complex-pole control,” IEEE J. Solid-State Circuits (JSSC), vol. 50, no. 2, pp. 440–449, Feb. 2015. (Top accessed JSSC paper, ranked 2nd in Feb. 2015)
  3. [J]. M. Tan and W.-H. Ki, “An efficiency-enhanced hybrid supply modulator with single-capacitor current-integration control,” IEEE J. Solid-State Circuits (JSSC), vol. 51, no. 2, pp. 533–542, Feb. 2016.
  4. [J]. M. Tan and W.-H. Ki, “ A 100MHz hybrid supply modulator with ripple-current-based PWM control ,” IEEE J. Solid-State Circuits (JSSC), vol. 52, no. 2, pp. 569–578, Feb. 2017.
  5. [J]. Chao Yang, Kaixuan Ye, M. Tan*, “ A 0.5-V output-capacitor-free low dropout regulator with 30-dB PSRR at 10-kHz,” IEEE Trans. Circuits Syst. II Exp. Briefs (TCAS-II), vol. 67, no. 10, pp. 1785–1789, Nov. 2020.
  6. [J]. 谭旻*, 明达, 汪志城, “从光子集成迈向光电融合集成回路:以微环波长锁定为例,” 微纳电子与智能制造, pp.32-47, 2019(3).
  7. [J]. Z. Xie, K. Ye, K. X. Wang, Q. Cheng, and M. Tan*, “A time-division-multiplexed clocked-analog low-dropout regulator,” IEEE Trans. Circuits Syst. I Regul. Pap., (TCAS-I), vol. 68, no. 3, pp. 1366–1376, Jan. 2021.
  8. [J]. M. Tan* et al., “Towards electronic-photonic-converged thermo-optic feedback tuning,” J. Semicond., vol. 42, no. 2, p. 23104, 2021.
  9. [J]. M. Tan*, Y. Wang, K. X. Wang*, Y. Yu, and X. Zhang, “Circuit-level convergence of electronics and photonics: basic concepts and recent advances,” Front. Optoelectron., vol. 15, no. 1, pp. 1-17, 2022.
  10. [J]. Siyuan Zhang, K. X. Wang, and M. Tan*, “An eight-channel switching-linear hybrid dynamic regulator with dual-supply LDOs for thermo-optic tuning,” IEEE Trans. Circuits Syst. I Regul. Pap., (TCAS-I), vol. 69, no. 8, pp. 3428 - 3437, May 2022.
  11. [J]. Yaowen Tu and M. Tan*, “ A three-stage amplifier with cascode Miller compensation and buffered asymmetric dual path for driving large capacitive loads,” IEEE Trans. Circuits Syst. II Exp. Briefs (TCAS-II), vol. 69, no. 11, pp. 4198–4202, 2022.
  12. [J]. Zhicheng Wang, Da Ming, Yuhang Wang, Ciyuan Qiu, and M. Tan*, “ Resolving the scalability challenge of wavelength locking for multiple micro-rings via pipelined time-division-multiplexing control,” Opt. Express (OE), vol. 30, no. 14, pp. 24984-24994, 2022.
  13. [J]. Zhicheng Wang, Da Ming, Yuhang Wang, Ken X. Wang, Xi Xiao, Xinliang Zhang and M. Tan*, “ An electronic-photonic converged adaptive-tuning-step pipelined time-division-multiplexing control scheme for fast and scalable wavelength locking of micro-rings,” J. Light. Technol. (JLT), vol. 40, no. 16, pp. 5622 - 5630, 2022.
  14. [J]. M. Tan*, Jiang Xu* et al., “ Co-packaged optics (CPO): status, challenges, and solutions,” Front. Optoelectron., 16, 1 (2023).
  15. [J]. Tianchi Ye, Kaixuan Ye, Ziying Xie and M. Tan*, “A four-channel TDM clocked-analog LDO using a shared compensation block for thermo-optic tuning,” IEEE Trans. Circuits Syst. I Regul. Pap., (TCAS-I), vol. xx, no. x, pp. xx, May 2024.
  16. [J]. Da Ming, Yuhang Wang, Zhicheng Wang, Ken Xingze Wang, Ciyuan Qiu, and M. Tan*, “EPHIC models: general SPICE photonic models for closed-loop electronic-photonic co-simulation,” IEEE Trans. Circuits Syst. I Regul. Pap., (TCAS-I), vol. xx, no. x, pp. xx, 2024.
  17. [J]. Yifan Zhang, M. Tan*, “ A buck converter with a fully-integrated current-mode Type-III compensator for envelop tracking of NB-IoT PAs,” In preparation for submisson.

Conference Papers


     
  1. [C]. M. Tan, R. W. Yeung, and S.-T. Ho, “A unified framework for linear network codes.” in 4th Workshop on Network Coding, Theory, and Applications, Hong Kong, China, Jan. 2008.
  2. [C]. M. Tan, “A zero-ESR stable adaptively biased low-dropout regulator in standard CMOS technology.” in IEEE 8th International Conference on ASIC, Changsha, China, pp. 1185-1188, Oct. 2009.
  3. [C]. M. Tan, D. Fu, and X. Huang, “A simple low power current sensor without using amplifier.” in 3rd IEEE International Conference on Computer Science and Information Technology, Chengdu, China, pp. 185-188, Jul. 2010.
  4. [C]. M. Tan and Q. Zhou, “An end-point prediction scheme with constant amplitude ramp signal suitable for high voltage applications.” in IEEE International Conference on Electron Devices and Solid-State Circuits, Hong Kong, China, Dec. 2010.
  5. [C]. Q. Zhou, M. Tan, and H. Li, “An LDO regulator with slew-rate enhancement circuit for low-power SoC.” in The 2011 International Conference on Electric Information and Control Engineering, Wuhan, China, pp. 32-35, Apr. 2011.
  6. [C]. M. Tan, F. Liu, and F. Xiang, “A novel sub-1V bandgap reference in 0.18µm CMOS technology.” in IEEE International Conference on Anti-Counterfeiting, Security and Identification, Xiamen, China, pp. 180-183, Jun. 2011.
  7. [C]. M. Tan and Q. Zhou, “A two-stage amplifier with active Miller compensation.” in IEEE International Conference on Anti-Counterfeiting, Security and Identification, Xiamen, China, pp. 201-204, Jun. 2011.
  8. [C]. M. Tan and W.-H. Ki, “Current-mirror Miller compensation: An improved frequency compensation technique for two-stage amplifiers,” in International Symposium on VLSI Design, Automation, and Test (VLSI-DAT), Hsinchu, Taiwan, pp. 312-315, Apr. 2013.
  9. [C]. M. Tan, C. Zhan, and W.-H. Ki, “A 4uA quiescent current output-capacitor-free low-dropout regulator with fully differential input stage,” in IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Australia, pp. 2457-2460, Jun. 2014.
  10. [C]. M. Tan and W.-H. Ki, “Split-output miller-compensated two-stage amplifiers,” in IEEE International Conference of Electron Devices and Solid-state Circuits (EDSSC), Hong Kong, China, Jun. 2013.
  11. [C]. M. Tan and W.-H. Ki, “A fast transient output-capacitor-free low-dropout regulator with Class-AB control stage,” in IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), Chengdu, China, Jun. 2014.
  12. [C]. M. Tan and W.-H. Ki, “A generic model for constructing three-stage amplifiers,” in IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, Canada, May 2016.
  13. [C]. M. Tan and W.-H. Ki, “Stability Conditions for Hybrid Supply Modulators,” in IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, USA, pp.1042-1045, Jun., 2017.
  14. [C]. Zhicheng Wang, Yu Yu, Xi Xiao, Miaofeng Li, Xuecheng Zou, Dingshan Gao, M. Tan*, “A time-division-multiplexing scheme for simultaneous wavelength locking of multiple silicon micro-rings”, in Proc. IEEE Int. Symp. Circuits Systems (ISCAS), Florence, Italy, May, 2018
  15. [C]. Da Ming, Zhicheng Wang, Lining Zhang, M. Tan*, “A Verilog-A compact model for silicon micro-ring supporting fast thermal-electronic-photonic co-simulation”, in The 10th Int. Conf. on Information Optics and Photonics (CIOP), Beijing, China, Jul., 2018
  16. [C]. Kaixuan Ye, Ziyan Li, M. Tan*, “An area-efficient current quantization circuit inspired by digital low-dropout regulators”, in Proc. IEEE Int. Conf. on Integrated Circuits, Technologies and Applications (ICTA), Beijing, China, Jul., 2018
  17. [C]. Yifan Zhang, M. Tan*, “A buck converter using a fully-integrated current-mode dual-path type-III compensator for NB-IoT applications”, in Proc. IEEE Int. Conf. on Integrated Circuits, Technologies and Applications (ICTA), Beijing, China, Jul., 2018
  18. [C]. Yuhang Wang, Da Ming, M. Tan*, “Closed-loop thermal-electronic-photonic co-simulation for a novel Mach-Zehnder modulator bias control scheme ”, in The 11th Int. Conf. on Information Optics and Photonics (CIOP), Xi'an, China, Aug., 2019
  19. [C]. Kaixuan Ye, M. Tan*, “A dual-channel digital low dropout regulator with time-division-multiplexing scheme ”, in Proc. IEEE Int. Conf. on Integrated Circuits, Technologies and Applications (ICTA), Chengdu, China, Nov., 2019
  20. [C]. Kaixuan Ye, M. Tan*, “A four-channel clocked-analog time-division multiplexed LDO with shared compensation capacitor for thermal-optic phase tuning", in Proc. IEEE Int. Conf. on Integrated Circuits, Technologies and Applications (ICTA), Nanjing, China, Nov., 2020
  21. [C]. Da Ming, Zhicheng Wang, Yuhang Wang, M. Tan*, “First demonstration of closed-loop PWM wavelength locking of a microring resonator in a monolithic photonic-BiCMOS platform", in Proc. IEEE Int. Conf. on Integrated Circuits, Technologies and Applications (ICTA), Nanjing, China, Nov., 2020
  22. [C]. Q. Fu, M. Tan*, D. Xing, S. Shao, Z. Hu, and J. Feng, “A 57.2-Gb/s PAM4 driver for a segmented silicon-photonics Mach-Zehnder modulator with extinction ratio >9-dB in 45-nm RF-SOI CMOS technology,” in Proc. IEEE Int. Symp. Circuits Systems (ISCAS), Daegu, Korea, May, 2021
  23. [C]. Zhicheng Wang, M. Tan*, “Fast wavelength locking of four mcro-ring resonators with hardware multiplexing”, in The 13th Int. Conf. on Information Optics and Photonics (CIOP), Xi'an, China, Jul., 2021
  24. [C]. S. Zhang, Z. Wang, and M. Tan*, “A dual-channel switching-linear series-connected hybrid dynamic power supply with dual-supply LDOs for thermo-optical tuning", in Proc. IEEE Int. Conf. on Integrated Circuits, Technologies and Applications (ICTA), Zhuhai, China, Nov., 2021
  25. [C]. Tianchi Ye, Qixin Liu, Yiwei Zou, Li Jin, Junbo Feng, and M. Tan*, “Optical Phased Array with Reduced Phase Tuning Resolution", in Proc. IEEE Int. Conf. on Integrated Circuits, Technologies and Applications (ICTA), Zhuhai, China, Nov., 2021
  26. [C]. Yuhang Wang, M. Tan*, “A dual-loop phase-reset-free endless polarization control scheme for electronic-photonic convergence”, in The 14th Int. Conf. on Information Optics and Photonics (CIOP), Xi'an, China, Jul., 2022
  27. [C]. Yue Yu, Da Ming, and M. Tan*, "A 0.58-pJ/bit 56-Gb/s PAM-4 Optical Receiver Frontend with an Envelope Tracker for Co-Packaged Optics in 40-nm CMOS" inProc. IEEE Int. Conf. on Integrated Circuits, Technologies and Applications (ICTA), Xi'an, China, Oct., 2022

Invited Talks


  1. [T] “智能化光电融合参数控制及其量子应用展望 ”, 量子计算芯片研讨会,珠海, 12月09日,2023
  2. [T] “EDA平台兼容光电融合建模仿真:挑战与进展 ”, 第四届光电子集成芯片立强大会,厦门, 8月12日,2023
  3. [T] “信息光电融合基础问题与光电融合ADC进展 ”, 中国物理学会2023年应用物理论坛系列会议(二)先进功能器件研讨会,哈尔滨, 7月18日,2023
  4. [T] “大规模信息光电融合发展极限及突破路径的一点思考 ”,第二届硅基光电子(硅光)创新论坛,杭州,5月7日,2023
  5. [T] “光电融合芯片:概念、挑战及进展”,2022 华为海思混合信号技术峰会 ,东莞松山湖,8月6日,2022
  6. [T] “光子器件紧凑建模及光电协同仿真”,第三届光电子集成芯片立强论坛,青岛,7月25日,2022
  7. [T] “信息光电融合:概念与挑战”,第三届光电子集成芯片立强论坛,青岛,7月25日,2022
  8. [T] “回路级光电融合集成:概念、挑战及进展”,光谷论坛(第二期):光电芯片、器件与集成,武汉,7月09日,2022
  9. [T] “神奇的光电融合芯片:不可靠电子和光子器件组成的可靠系统”,华中科技大学物理学院,武汉,4月15日,2022
  10. [T]“信息视角的光电融合芯片:概念、挑战与最新进展”,新型纳米光电信息材料与器件湖南省重点实验室年会,长沙,1月25日,2022
  11. [T]“光子集成与集成电路的回路级融合:信息科学的视角", 武汉光电国家研究中心青年学术午餐会,武汉,11月19日,2021
  12. [T] “光电融合集成回路:原理、进展及其数据中心潜在应用”,华为武研大讲坛,武汉,10月20日,2021
  13. [T] “借鉴集成电路发展光电融合:概念、挑战、方案及进展”,第一届硅基光电子创新论坛,兰州,9月30日,2021
  14. [T] “光电融合集成回路及其柔性光电潜在应用”,钱塘科技创新中心学术交流,杭州,6月28日,2021
  15. [T] “面向医疗应用的光电融合芯片”,光电子学前沿系列研讨会之医疗光电子研讨会,华中科技大学,武汉,6月26日,2021
  16. [T] “Circuit-Level Convergence of Electronics and Photonics: Basics and Recent Advances”,2020 IEEE国际集成电路技术与应用学术会议(ICTA2020),南京,11月25日,2020
  17. [T] “From Photonic Integration to Electronic-Photonic Heterogeneously-converging IC (EPHIC)”,OPTICS Workshop at DATE 2020,France,2020
  18. [T] “迈向光电融合集成回路的途径-集成电路的视角”,第十三届信息光电子发展战略研讨会,北京,12月28日,2019
  19. [T] “光电融合集成回路:挑战和进展”,南方科技大学,深圳,11月22日,2019
  20. [T] “从光子集成迈向光电融合集成回路:以微环波长锁定为例”,第三届微纳光学暨第四届微波光子学技术及应用研讨会,南京,8月25日,2019
  21. [T] “后摩尔时代的光电融合:回路设计和仿真的视角”,重庆联合微电子中心,重庆,7月9日,2019
  22. [T] “从功率集成电路到光电融合回路:基于片上反馈的视角”,大连理工大学,大连,7月3日,2019
  23. [T] “后摩尔时代的光电融合:回路和系统的视角”,北京电子学会,北京,6月24日,20119
  24. [T] “通往后摩尔时代的光电融合:闭环控制的演进”,华中科技大学学术前沿青年团队学术论坛,武汉,12月25日,2018
  25. [T] “新兴交叉学科研究和教学的实践与思考-以功率电子芯片为例”,教育部中南地区高等学校电子电气基础课教学研究会, 荆州, 8月20日,2018